
Understanding nonlocal

 The nonlocal keyword is used within nested functions to declare that a variable is not local to the

inner function but resides in a closer enclosing scope (beyond the local scope).

 It allows the nested function to modify the value of the variable in the enclosing scope.

Syntax
 nonlocal variable_name

 # Rest of the function's code

 The nonlocal keyword must appear at the beginning of the inner function, before any

assignments or operations on the variable.

 You can declare multiple variables as nonlocal in a single statement.

Example
def outer_function():

 count = 0

 def inner_function():

 nonlocal count # Declare 'count' as nonlocal

 count += 1

 return count

 return inner_function

increment = outer_function()

print(increment()) # Output: 1

print(increment()) # Output: 2

In Summary

The nonlocal keyword provides a mechanism for nested functions to access and modify variables

in their enclosing scopes, but it's important to use it thoughtfully and consider alternative

approaches when appropriate. By following these guidelines, you can write cleaner and more

maintainable Python code.

Understanding global

 The global keyword is used within functions to declare that a variable belongs to the module's

global scope (the entire Python file).

 It allows the function to modify the value of the global variable, even though the variable is not

defined within the function itself.

Syntax
global variable_name

Rest of the function's code

 The global keyword appears at the beginning of the function, before any assignments or

operations on the variable.

 You can declare multiple variables as global in a single statement.

Example
count = 0 # Global variable

def increment():

 global count # Declare 'count' as global

 count += 1

increment()

print(count) # Output: 1

In Conclusion

The global keyword provides a way for functions to access and modify global variables, but it's

essential to use it with caution and explore alternative approaches for better code organization.

