
TEXT FILE HANDLING IN PYTHON

Text file handling in Python involves operations such as reading from, writing to, and manipulating

text files using Python's built-in file handling mechanisms. Here's a detailed overview:

Opening a File:

You can open a file using the built-in `open()` function. It takes two arguments - the file path and the

mode ('r' for reading, 'w' for writing, 'a' for appending, and 'r+' for both reading and writing). If the

file does not exist, it will be created.

1. # Opening a file in read mode

2. file = open("example.txt", "r")

Reading from a File:

After opening a file in read mode, you can read its contents using various methods like `read()`,

`readline()`, or `readlines()`.

1. # Reading the entire file

2. content = file.read()

3.

4. # Reading one line at a time

5. line = file.readline()

6.

7. # Reading all lines into a list

8. lines = file.readlines()

Difference between read(), readline() and readlines()

In Python, when working with text files, `read()`, `readline()`, and `readlines()` are methods used to

read data from a file, but they differ in their behavior and what they return:

1. `read()`:

 - Reads the entire contents of the file as a single string.

 - If you don't specify the number of bytes to read, it will read the entire file.

 - Example:

1. with open('file.txt', 'r') as file:

2. content = file.read()

2. `readline()`:

 - Reads a single line from the file.

 - Each time you call `readline()`, it reads the next line from the file.

 - Example:

1. with open('file.txt', 'r') as file:
2. line1 = file.readline() # Reads the first line

3. line2 = file.readline() # Reads the second line

3. `readlines()`:

 - Reads all the lines of a file and returns them as a list of strings.

 - Each string in the list represents a single line from the file.

 - Example:

1. with open('file.txt', 'r') as file:
2. lines = file.readlines()

In summary:

- Use `read()` when you want to read the entire content of the file as a single string.

- Use `readline()` when you want to read the file line by line, or you only need to process one line at

a time.

- Use `readlines()` when you want to read all the lines of the file into a list, especially if you need to

iterate over them or access them randomly.

Writing to a File:

When you open a file in write mode, you can write data to it using the `write()` method.

1. # Opening a file in write mode

2. file = open("example.txt", "w")

3.

4. # Writing data to the file

5. file.write("Hello, World!\n")

Appending to a File:

Appending to a file is similar to writing, but it doesn't erase the existing content. Instead, it adds new

content to the end of the file.

1. # Opening a file in append mode

2. file = open("example.txt", "a")

3.

4. # Appending data to the file

5. file.write("Appending new line!")

Closing a File:

It's essential to close the file once you're done working with it to free up system resources.

1. # Closing the file

2. file.close()

Context Managers (with Statement):

Python's `with` statement provides a more concise way to open and work with files. It automatically

closes the file when the block inside `with` is exited.

1. with open("example.txt", "r") as file:

2. content = file.read()

3. print(content)

Error Handling:

It's crucial to handle exceptions that might occur during file operations, such as `FileNotFoundError`

or `PermissionError`.

1. try:

2. file = open("example.txt", "r")

3. content = file.read()

4. print(content)

5. except FileNotFoundError:

6. print("File not found!")

7. except PermissionError:

8. print("Permission denied!")

9. finally:

10. file.close()

Difference between write() and writelines() :

In Python text file handling, `write()` and `writelines()` are methods used to write data into a file, but

they differ in how they handle input and where they position the file cursor. Here's a breakdown of

the differences:

1. **write()**:

 - `write()` is a method used to write a string to a file.

 - It writes the string directly to the file without adding any line breaks unless explicitly included in

the string.

 - If the file is opened in text mode (`'t'`), it expects a string as input. If opened in binary mode (`'b'`),

it expects a bytes-like object.

 - After writing, the file cursor moves to the end of the written content.

 Example:

1. with open("file.txt", "w") as file:

2. file.write("Hello, world!\n")

2. **writelines()**:

 - `writelines()` is used to write a sequence of strings to a file.

 - It takes an iterable (such as a list of strings) as input and writes each element of the iterable to

the file.

 - It does not automatically add line breaks between strings, so if line breaks are needed, they must

be included in the strings themselves.

 - After writing, the file cursor moves to the end of the last string written.

 Example:

1. with open("file.txt", "w") as file:

2. lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

3. file.writelines(lines)

In summary, `write()` is used to write a single string to a file, `writelines()` is used to write multiple

strings from an iterable to a file.

Example program to use exception handling while writing content to a text file.

1. try:

2. # Open the file in write mode

3. with open("output.txt", "w") as file:

4. # Write data to the file

5. file.write("Hello, world!\n")

6. file.write("This is a test.\n")

7. file.write("Writing to a text file using Python.\n")

8. # Simulate an error by attempting to write to a closed file

9. # This will trigger an IOError, which we'll handle

10. file.write("This will cause an error.\n")

11. except IOError as e:

12. # Handle the IOError exception

13. print("An error occurred:", e)

14. else:

15. # Code inside else block executes if no exception occurs

16. print("Data has been written to the file successfully.")

17. finally:

18. # This block will always execute, regardless of whether an exceptio

n occurred

19. print("Closing the file.")

