Python's “pickle™ module:

What is the “pickle” Module?

The “pickle’ module in Python is used for serializing and deserializing Python objects.
Serialization is the process of converting a Python object into a byte stream,

and deserialization is the process of reconstructing a Python object from the byte stream.
Pickling is the term used for serialization, and unpickling is used for deserialization.
Basic Usage:

1. **Importing the Module:**

import pickle
2. **pickling Objects:**
To pickle an object, you use “pickle.dump()" function.
Syntax:
pickle.dump(obj, file)
obj: The Python object to be serialized.
file: The file object where the serialized data will be written.
This file object should be opened in binary write mode ('wb').

Example:

data = {'name’': 'John', 'age': 30, 'city': 'New York'}
with open('data.pkl’', 'wb') as file:
pickle.dump(data, file)

3. **Unpickling Objects:**
To unpickle an object, you use “pickle.load()" function.

Example:
with open('data.pkl’, 'rb') as file:
loaded_data = pickle.load(file)

print(loaded_data) # Output: {'name': 'John', 'age': 30,

Serialization Format:

- "pickle® serializes Python objects into a binary format.

- It can handle almost any Python data type including custom objects, functions, and more.
- However, it's not secure against erroneous or maliciously constructed data.

Examples:
1. **Serializing and Deserializing a List:**
original list = [1, 2, 3, 4, 5]

with open('list.pkl', 'wb') as file:
pickle.dump(original_list, file)

with open('list.pkl', 'rb') as file:
loaded_list = pickle.load(file)

print(loaded_list) # Output: [1, 2, 3, 4, 5]

Precautions:
- Be cautious when unpickling data from an untrusted source, as it can execute arbitrary code.
- It's generally not recommended to use "pickle’ for transmitting data between untrusted parties or across unsecured networks.

#Example 1
import pickle

Sample tuple
my_tuple = (1, 2, 3, 'a', 'b', 'c")

Just to Serialize the tuple
serialized_tuple = pickle.dumps(my_tuple)

Deserializing the tuple
deserialized_tuple = pickle.loads(serialized_tuple)

print("Original tuple:", my_tuple)
print("Serialized data:", serialized_tuple)
print("Deserialized tuple:", deserialized_tuple)

#Example 2:
import pickle

Sample dictionary
my_dict = {'name': 'Alice', 'age': 30, 'city': 'New York'}

Serializing the dictionary to a pickle file
with open('data.pickle', 'wb') as file:
pickle.dump(my_dict, file)

Deserializing the dictionary from the pickle file
with open('data.pickle’, 'rb') as file:
deserialized _dict = pickle.load(file)

print("Original dictionary:", my_dict)
print("Deserialized dictionary:", deserialized_dict)

