
Arguments in Python User-Defined Functions

Arguments are like inputs that you pass to a function when you call it. They provide

the function with the information it needs to perform its task.

Here's a breakdown of different types of arguments in Python functions:

 Positional arguments: These are arguments passed to the function in the same

order they are defined in the function's parameter list. The function expects a specific

number of arguments in a specific order.

 Keyword arguments: These arguments are passed using the variable name and an

assignment operator (=) when calling the function. This allows you to pass

arguments in any order, as long as you use the correct variable names.

 Default arguments: These arguments come with a pre-defined value assigned

within the function definition. If you don't provide a value for a default argument when

calling the function, the default value is used.

 *Arbitrary positional arguments (args): This allows you to pass a variable number of

positional arguments to a function. These arguments are stored as a tuple inside the

function.

 **Arbitrary keyword arguments (kwargs): This allows you to pass a variable number

of keyword arguments to a function. These arguments are stored as a dictionary

inside the function.

Return Types in Python User-Defined Functions

The return type refers to the data type of the value a function returns to the calling

code. A function can return any data type in Python, including strings, integers, lists,

or even custom objects.

 Explicit return: You can explicitly use the return statement to specify the value the

function returns.

 Implicit return: If a function doesn't explicitly use a return statement, it implicitly

returns None.

Example: User-Defined Function with Arguments and Return Type

Here's an example of a function that calculates the area of a rectangle and

demonstrates arguments and return types:

Python
def calculate_area(length, width):

 """This function calculates the area of a rectangle.

 Args:

 length: The length of the rectangle (float).

 width: The width of the rectangle (float).

 Returns:

 The area of the rectangle (float).

 """

 area = length * width

 return area

Call the function with arguments

rectangle_area = calculate_area(5, 3)

print(f"The area of the rectangle is: {rectangle_area}")

In this example:

 length and width are positional arguments.

 The function calculates the area and returns it (float).

Exercise Questions

1. Write a Python function that takes two numbers as arguments and returns

their sum. Can you make this function handle non-numeric inputs gracefully?

2. Write a Python function that checks if a given string is a palindrome (reads the

same backward as forward). The function should be case-insensitive.

3. Write a Python function that takes a list of numbers as input and returns a new

list containing only the even numbers. Use a loop and conditional statement

within the function.

4. Write a Python function that calculates the factorial of a non-negative integer

passed as an argument. Remember, the factorial of a number is the product of

all positive integers less than or equal to that number.

5. Write a Python function that takes a string as input and returns a new string

with all the vowels removed. Can you achieve this without using conditional

statements for each vowel?

6. Write a Python function that finds the greatest common divisor (GCD) of two

positive integers passed as arguments. There are multiple ways to solve this;

you can implement the Euclidean algorithm.

7. Write a Python function that takes a list of words as input and returns a new

list with all the words converted to uppercase. Use list comprehension for a

concise solution.

8. Write a Python function that checks if a given string is a valid phone number.

The function should account for different formatting styles (e.g., with or

without hyphens). (Note: This can be a more complex task depending on the

desired level of validation)

9. Write two Python functions: one that calculates the area of a circle and

another that calculates the area of a rectangle. Both functions should take the

necessary dimensions as arguments and return the calculated area.

10. Write a Python function that uses recursion to print the Fibonacci sequence up

to a certain number (passed as an argument). The Fibonacci sequence is

where each number is the sum of the two preceding numbers (starting from 0

and 1).

