## Purpose:

Generates pseudo-random numbers and performs random actions for various tasks in Python.

## Key Functions:

random.randint $(a, b)$ :
Returns a random integer between a (inclusive) and b (inclusive).
Example: random.randint ( 1,6 ) generates a random roll of a dice.
random.randrange(start, stop, step):
Returns a randomly selected element from a range, similar to range() but with random selection.
start is included, stop is excluded.
step specifies the step size (default is 1 ).
random.choice (sequence):
Returns a randomly selected element from a non-empty sequence (list, tuple, string).
Raises IndexError if the sequence is empty.

## random.shuffle(list):

Randomly shuffles the elements of a list in-place.

## Other Useful Functions:

random. random (): Returns a random floating-point number between 0.0 and 1.0 .
random. seed (a) : Sets the seed for the random number generator, ensuring reproducibility.

## Important Notes:

- The module generates pseudo-random numbers, meaning they are not truly random but appear random for practical purposes.
- If you need cryptographically secure random numbers, use the secrets module.
- For more advanced random number generation from different distributions, consider the numpy.random module.


## Example:

Python
import random
\# Generate a random integer between 1 and 10
number $=$ random.randint $(1,10)$
print(number)
\# Choose a random element from a list
fruits = ["apple", "banana", "orange"]
random_fruit $=$ random.choice (fruits)
print(random_fruit)
\# Shuffle a list of numbers
numbers $=[1,2,3,4,5]$
random.shuffle(numbers)
print(numbers)

Some other functions from random module
The `random.sample` function in the `random` module is used to generate a random sample from a given sequence (such as a list or range) without replacement. "Without replacement" means that once an element is selected, it is not available for selection again in the same sample.

## Syntax:

random.sample(population, k)

- `population`: This is the input sequence (e.g., a list or range) from which the sample is taken.
- `k': This is the size of the sample.

The function returns a list containing unique elements randomly chosen from the population.

## For example:

row $=$ random.sample(range $(1,10), 5)$
Generates a list `row` containing 5 unique random numbers between 1 and 9 (inclusive). This ensures that each row in the Housie ticket has unique numbers.

